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Why mmWave?

Broadband
Interaction Experience.
Human - 10T Everywhere,
Anytime.
Critical Smart
Control of Vehicles,
Remote Transport &
Devices Infrastructure

Media
Everywhere

Image ©Ericsson



Why mmWave?

Not an evolution
of 4G,
but a full new mobile
system

dozens of times faster
than 4G
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Why mmWave?

Other possibilities for mmWave:
» Data center interconnects
Circuit junctions
Information showers
Vehicular communications



Why mmWave?

The 1000x throughtput objective of 5G (among others)

Density x Spectral Efficiency x Bandwith



Why mmWave?
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Why mmWave?

aP
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mmWave characteristics

» Friis free-space equation:

p Effective Power
T A d>

A )2
Effective Apert = PG, G | —
x Effective Aperture rGrGy <47Td)

» Antenna gain:
2

» Actual pathloss depends on the line-of-sight situation



mmWave characteristics

Circular antenna array (5cm at 6 GHz)

Circular antenna array (5cm at 60 GHz)
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mmWave characteristics

Coverage distance w.rt. antenna gain, for a pathloss exponent n

Maximum Coverage Distance (m)

Maximum Coverage Distance VS Combined TX-RX Antenna Gain
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From Rappaport et al., “mmWave mobile communications for 5G cellular: it will work!”, 2013.



mmWave characteristics

Atmospheric absorption occurs due to oxygen and water molecules
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mmWave characteristics

Rain attenuation effects are more prominent

(=200 mmhr

=150 mmvhr: Monsoon
[===100 mmvhr: Tropical
[===50 mmvhr: Downpour
====25 mmvhr: Heavy rain
——=12.5 mmhr: Medium rain
——2 5 mmvhr: Light rain
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mmWave characteristics

» Diffraction effects are not a good propagation mechanism
(unlike sub-4G cellular)

» Reflection and scattering tend to be more specular

v
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mmWave characteristics

Reflection and transmission losses.

Environment Material Angle (°)  Reflection Loss (dB)
Tinted Glass 10 0.5
Outdoor .
Concrete 10 09
45 21
Clear Glass 10 13
| 1 1.
ndoor Drywall ° >
45 22
Environment Material Thickness (cm)  Penetration Loss (dB)
Tinted Glass 4 401
Outdoor Brick 185 283
Clear Glass 1 3.6
Indoor Tinted Glass 1 24.5

Drywall 38 6.8




mmWave characteristics

Diffraction and Fresnel zones.
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mmWave characteristics

Doppler effect
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» Channel stability depends heavily on beamwidth and
bandwith

» Channels are expected to change roughly 10 times faster than
in current cellular bands!



mmWave characteristics

Angular power profile (azimuth) for a LoS and NLoS link
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From Sun et al., “MIMO for mmWave communications: beamforming, spatial multiplexing or both?”, 2014.



mmWave characteristics

R.M.S. delay spread for a 38 GHz link in LoS and non-LoS conditions

Max[o,, oJ=117ns

2

é 08 --LOS

3 —NLOS

Sos

7 E["Losl=1'1"s

8 =1,
Co4 Max[cLos] 1.4ns
s

['4

202 E[uNLos]=12.2ns
3

8

3

o

=

40 60 80
RMS Delay Spread (ns)

From Rappaport et al., “mmWave mobile communications for 5G cellular: it will work!”, 2013.



mmWave characteristics

uWave mmWave
Bandwith 1.4-150 MHz  100-2000 MHz
# antennas (BS) 1-8 16-256
# antennas (UE) 1-2 4-32
Delay spread 01-10 1S 10-40 ns
Angle spread 60 deg. 60 deg.
Scatterers 4-9 <l
Fading Rayleigh Rician
Pathloss exponent 2-4 2-4
Penetration loss small high
Spatial correlation less more




mmWave projected capacity

Channel capacity from measurements, at 28 GHz and 73 GHz

Uplink rate CDF
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From Rangan et al., “Millimeter-Wave Cellular Networks: Potentials and Challenges”, 2014.



mmWave projected capacity

The relatively sparse channel leads to a 3-level outage behavior:
Pout(d) = max{0,1 —exp (—Bod + B1)}
pros(d) = (1 — pout(d)) exp (—B2d)}
prnros(d) =1 — pout(d) — pros(d)
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From Adkeniz et al., 2013



mmWave projected capacity

Stochastic geometry approach ; extending Poisson point processes
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From Bai et al., “Coverage and capacity of mmWave cellular networks”, 2014
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mmWave projected capacity

Introducing random “shape” processes
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From Bai et al., “Coverage and capacity of mmWave cellular networks”, 2014



mmWave projected capacity

Projected spectral efficiency using the SG model

Architecture Avg. 5%
SISO (uWave) 31 12
SU-MIMO (uWave) 77.2 1.4

Massive MIMO (uWave) 4322 1241
SU-beamsteering (mmWave) 4512  294.4
MU-beamsteering (mmWave) 9017 576

From Bai et al., “Coverage and capacity of mmWave cellular networks”, 2014




Antennas and arrays for mmWave

» Short wavelength : more potential for high gain antennas and
arrays

» Even packaging antennas with other transceiver parts

» Compared to traditional antennas, efficiency is more of an
issue than gain

» Joint behavior of other metal elements in the near-field

» Difficulties in measuring and characterizing the antenna
patterns



Antennas and arrays for mmWave

Beamforming/beamsteering basics
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Antennas and arrays for mmWave

» Beam-steering is required to get the benefits of antenna
arrays and mmWave

» Issue : how to discover the angles of arrival? How to estimate
then and feed them back?

» One solution : beam codebooks

(a) Quasi-omni pattern (b) Sector (¢) Beam

From Lan et al., “Beam codebook based beamforming protocol for multi-Gbps mmWave networks”, 2009.



Antennas and arrays for mmWave

» Another solution: low-frequency assisted beamsteering
» But you can use classical phased array techniques on the
massive MIMO low-frequency array!
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Antennas and arrays for mmWave

Analog beamforming (high ADC consumption)
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Antennas and arrays for mmWave

Hybrid beamforming : aims at enabling multiple users and/or

streams on the same band

Baseband
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Antennas and arrays for mmWave

Multiple streams in a mainly LoS link: the reality

(aperture D)
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Antennas and arrays for mmWave

At a close range, spherical wave inputs some diversity in the
channel — capacity gains from multi-stream MIMO




Antennas and arrays for mmWave

Distance limits to see tangible effects on the channel capacity
(Jiang-Ingram bound)
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Antennas and arrays for mmWave

Line-of-sight MIMO: harnessing spherical waves

TX array RX array

R
Optimal array distance: d? = AR



Antennas and arrays for mmWave

Comparing beamforming and static precoding at 60GHz with LoS

MIMO
80 ,
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16/16 means 16 TX antennas and 16 RX antennas



Antennas and arrays for mmWave

Performance of hybrid beamforming approaches on LoS MIMO
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mmWave industrial and academic opportunities

» Massive wideband architectures
» Single-carrier or OFDM/filter-banks?
» Precoding and multiplexing architectures

» Low power, low cost, low resolution
» Issues of channel estimation and quantization

» Dirty RF and non-optimal components
» Phase noise, frequency offsets, oscillator pulling...
» MAC layer issues

» Network discovery and beam scanning
» Hidden nodes
» Handovers, ...

» Waveform design for communications, and hybrid
radar/communication transceivers



