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In class:

- Wireless sensor network (WSN) overview
- Energy harvesting
- Energy constraints in WSN

- Application example: distributed estimation

In the lab:

- |EEE 80215.4 PHY layer

- Jamming and jamming avoidance



Overview



Wireless Sensor Networks

- Low energy

- Low computational
power

- Cheap hardware

- Long duty cycles
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Sensor architecture
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Energy harvesting technologies

Prominent candidates or technologies for harvesting:

- Solar: electrons are excited inside a silicon cell

- Vibrations: energy can be scavenged through EM transduction
or piezo-electricity

- Thermoelectric: thermal gradient produces a potential and
can thus be exploited

- Wind: power electrical generator

- Wireless EM: induction, resonant coupling, or far field



Energy harvesting technologies

Microwave transmission of gigawatts of solar power




Energy harvesting technologies
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Protocol stacks
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Physical layer

Name Bluetooth Bluetooth LE

Range 100m 50m

Rate 1-3 Mbit/s 1 Mbits/s

Throughput up to 221 Mbits/s 0.27 Mbits/s

Active slave 7 Undefined

Robustness Adaptive hopping, fast Adaptive hopping, lazy
ACK, FEC ACK, CRC

Latency 100ms 6 ms

Voice capable Yes No

Topology Star Star

Power consump. 1 (reference) 0.01t0 0.5

Peak current 30 mA 15 mA




Network layer
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Network layer

IPv6 header (40 bytes)
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Data flow and aggregation

Star topology Tree topology
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Basic security needs in networking:

- Confidentiality
- Integrity

- Identity

-+ Trust

- Non-repudiation



Sybil attacks
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Energy constraints




Energy constraints in routing

Imbalanced routing can impact the node lifetime greatly



Energy constraints in routing

Nodes close to the sink will still die earlier
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Spectral Efficiency-Energy Efficiency
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Spectral Efficiency-Energy Efficiency

Delay and energy per bit

Ep = YeWDpNo + Eq + PRy - Dp
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Spectral Efficiency-Energy Efficiency
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Energy-delay tradeoffs in routing

How to apply this result to route constructions?
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Energy-Delay tradeoffs in routing

Separability of the energy and delay optimization in 7y and -y,
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Distributed estimation




Bias and variance

Parameter 8 — Samples {x,(6)}

An estimator is a function of the samples

6 = f({x(6)})

Bias How far it is the true value in average

Variance How spread it is around its mean
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Estimation in Gaussian noise

Noisy observations:

Xn = 0+ z, M=yooo N

N
: _ 1
Sample mean estimator: x = N Zx,,
n=1
Quantize with a single bit:
bn = 1xn€(7',.,+oo)

by, is Bernoulli distributed with gn(8) = Pr{b, =1} = F;(7, — 0)
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Distributed estimation

Assume that all the thresholds are equal,ie. 7, = - - - = 7y = 7.

Maximum likelihood estimator for the distributed case with 1-bit
quantization:

N
A ~ _ 1
0=1c—F"(4(0) =1 —F," (sz”>
n=1

Cramer-Rao bound on the unbiased estimator variance:

1 F(tc—0)(1— F(1c — 9))

N p2(Tc — 6)
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24



Distributed estimation variance
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Tracking performance
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