Wireless Sensor Networks

Paul Ferrand

April 2018

Huawei Technologies France

Synopsis

In class:

- · Wireless sensor network (WSN) overview
- Energy harvesting
- · Energy constraints in WSN
- · Application example: distributed estimation

In the lab:

- · IEEE 802.15.4 PHY layer
- · Jamming and jamming avoidance

Overview

Wireless Sensor Networks

- · Low energy
- Low computational power
- · Cheap hardware
- Long duty cycles

History

Sensor architecture

Energy harvesting technologies

Prominent candidates or technologies for harvesting:

- · Solar: electrons are excited inside a silicon cell
- Vibrations: energy can be scavenged through EM transduction or piezo-electricity
- Thermoelectric: thermal gradient produces a potential and can thus be exploited
- Wind: power electrical generator
- · Wireless EM: induction, resonant coupling, or far field

Energy harvesting technologies

Microwave transmission of gigawatts of solar power

Energy harvesting technologies

The Qi wireless mobile device charging Standard

Electric tooth brush

Wireless powered medical implants

wireless charging

Complete Writes Inch

EM Radiation

(P PONERCEST

×

Haier wireless powered HDTV

Intel WISP RFID tags harvest energy from RF radiation

Powercast RF harvesting circuit for sensor networks

The SHARP unmanned plane receives energy beamed from the ground

Protocol stacks

Physical layer

Name	Bluetooth	Bluetooth LE
Range	100m	50m
Rate	1-3 Mbit/s	1 Mbits/s
Throughput	up to 2.1 Mbits/s	0.27 Mbits/s
Active slave	7	Undefined
Robustness	Adaptive hopping, fast	Adaptive hopping, lazy
	ACK, FEC	ACK, CRC
Latency	100ms	6 ms
Voice capable	Yes	No
Topology	Star	Star
Power consump.	1 (reference)	0.01 to 0.5
Peak current	30 mA	15 mA

Network layer

From Texas Instrument, "Demystifying 6LoWPAN", 2014.

Network layer

IPv6 header (40 bytes)

Ver	Traffic Class	Flow label	Payload length	Hop limit	Next header	+256 bits
-----	------------------	------------	----------------	-----------	----------------	-----------

6LoWPAN Header Type 1 (2 bytes)

Ver	Compressed header

6LoWPAN Header Type 2 (12 bytes)

Ver	Compressed header	Context ID	Hop limit	Destination ad- dress (64 bits)
-----	----------------------	------------	-----------	------------------------------------

Data flow and aggregation

Star topology

Tree topology

Security

Basic security needs in networking:

- Confidentiality
- Integrity
- Identity
- Trust
- · Non-repudiation

Sybil attacks

Energy constraints

Energy constraints in routing

Imbalanced routing can impact the node lifetime greatly

Energy constraints in routing

Nodes close to the sink will still die earlier

Spectral Efficiency–Energy Efficiency

Start from normalized TX and RX SNR

$$\gamma_e = \frac{P}{WN_0}$$
 $\gamma_r = A_0 d^{-\alpha} \frac{P}{WN_0} = A_0 d^{-\alpha} \gamma_e$

Shannon's theoretical channel capacity is

$$C(\gamma_r) = W \log_2(1 + \gamma_r)$$

Spectral Efficiency–Energy Efficiency

Delay and energy per bit

$$D_b = \frac{1}{C(\gamma_r)}$$
 $E_b = \gamma_e W D_b N_o + E_Q + P_{RF} \cdot D_b$

Spectral Efficiency–Energy Efficiency

Energy-delay tradeoffs in routing

How to apply this result to route constructions?

Normalized the metrics by the distance

$$\tilde{E}_b = \frac{E_b}{d}$$
 $\tilde{D}_b = \frac{D_b}{d}$

Energy-Delay tradeoffs in routing

Separability of the energy and delay optimization in γ_e and γ_r

$$\tilde{E}_b = \frac{\gamma_e N_o + E_{\mathrm{RF}}}{(A_o \gamma_e)^{\frac{1}{\alpha}}} \cdot \frac{\gamma_r^{\frac{1}{\alpha}}}{\log_2(1 + \gamma_r)} \qquad \tilde{D}_b = \frac{1}{(A_o \gamma_e)^{\frac{1}{\alpha}}} \cdot \frac{\gamma_r^{\frac{1}{\alpha}}}{\log_2(1 + \gamma_r)}$$

Distributed estimation

Bias and variance

Parameter
$$\theta \longrightarrow \text{Samples } \{x_n(\theta)\}$$

An estimator is a function of the samples

$$\hat{\theta} = f(\{x_n(\theta)\})$$

Bias How far it is the true value in average **Variance** How spread it is around its mean

Estimation in Gaussian noise

Noisy observations:

$$x_n = \theta + z_n$$
 $n = 1, ..., N$

Sample mean estimator: $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$

Quantize with a single bit:

$$b_n = \mathbf{1}_{X_n \in (\tau_n, +\infty)}$$

 b_n is Bernoulli distributed with $q_n(heta) = \Pr\left\{b_n = 1
ight\} = \mathit{F_z}(au_n - heta)$

Distributed estimation

Assume that all the thresholds are equal, i.e. $\tau_1 = \cdots = \tau_N = \tau_c$.

Maximum likelihood estimator for the distributed case with 1-bit quantization:

$$\hat{\theta} = \tau_c - F_z^{-1}(\hat{q}(\theta)) = \tau_c - F_z^{-1}\left(\frac{1}{N}\sum_{n=1}^N b_n\right)$$

Cramer-Rao bound on the unbiased estimator variance:

$$\operatorname{var}(\hat{\theta}) \geq \frac{1}{N} \cdot \frac{F(\tau_c - \theta)(1 - F(\tau_c - \theta))}{p^2(\tau_c - \theta)}$$

Distributed estimation variance

Tracking performance

